

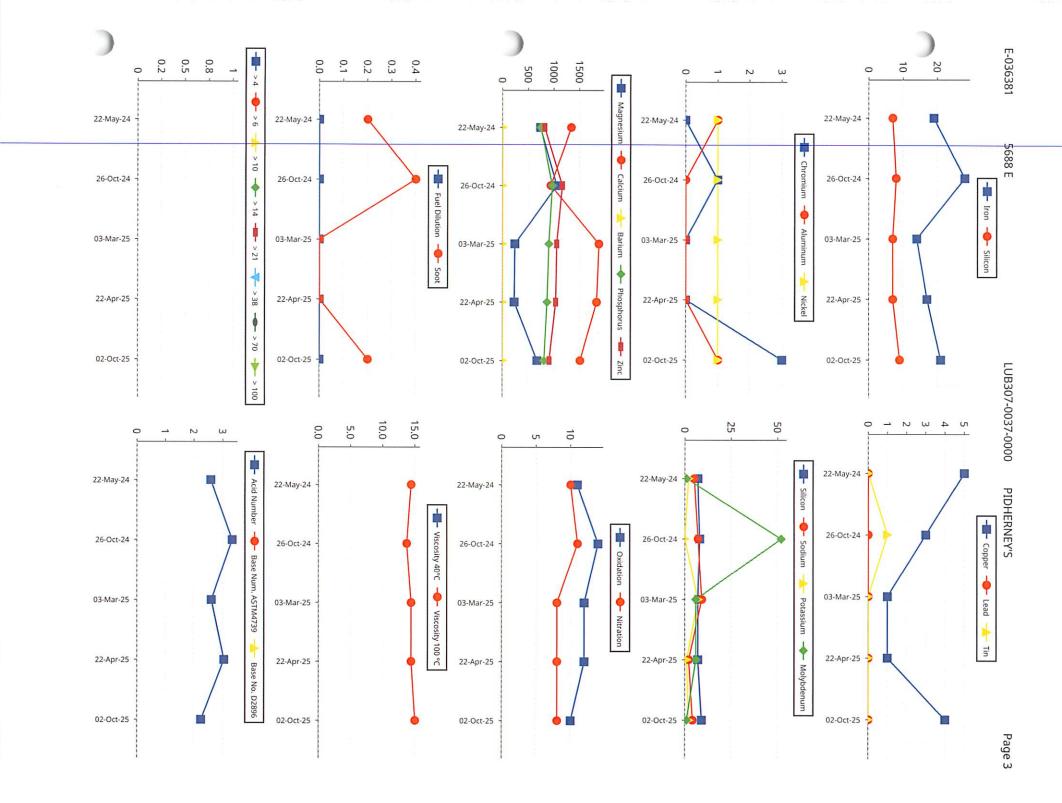
capacity with next sample.

Lubricant Analysis Report

North America: +1-866-341-0487

Overall report severity based on comments.

Acco	unt Information	Component Information	Sample Information
Account Number:	LUB307-0037-0000	Component ID: 5688 E	Tracking Number: 25219P96578
Company Name:	PIDHERNEY'S	Secondary ID: 1FF300GXV6F731711	Lab Number: E-036381
Contact:	CARLA MERKLIN	Component Type: DIESEL ENGINE	Lab Location: Edmonton
Address:	RANGE RD 70 PO BOX 940	Manufacturer: JOHN DEERE	Data Analyst: 19B
	ROCKY MOUNTAIN HOUSE,	Model: POWERTECH PVS 6.8L	Sampled: 02-Oct-2025
Phone Number:	AB T4T 1A7 CA 403-845-3072	Application: CONSTRUCTION Sump Capacity:	Submitted: 22-Oct-2025 Received: <mark>24-Oct-2025</mark>
			Completed: 30-Oct-2025
Filt	er Information	Miscellaneous Information	Product Information
Filter Type: Micron Rating:	Information Requested 0	Wildcard 1: Your Rep.: Cary Maxwell Wildcard 2: Ph:(403) 861-9957 Wildcard 3: _	Product Manufacturer: CHEVRON Product Name: DELO 400 XSP Viscosity Grade: SAE 5W40


				We	ar Me	tals (pj	pm)					ntamir tals (p		N	Multi-S	ource	Metal	s (ppm	1)	A	dditive	Meta	ls (ppn	n)
Sample #	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorus	Zinc
BL	3	0	0	1	0	1	0	0	0	0	6	3	3	1	0	0	0	1	98	775	1323	0	768	869
15	19	0	1	1	5	0	0	0	0	0	7	5	2	1	1	0	0	0	47	737	1334	0	748	818
16	28	1	1	0	3	0	1	0	0	0	8	7	0	0	52	0	0	0	15	1056	939	0	969	1160
17	14	0	1	0	1	0	0	0	0	0	7	9	7	1	6	0	0	1	127	243	1876	0	904	1053
18	17	0	1	0	1	0	0	0	0	0	7	2	1	1	6	0	0	1	124	231	1831	0	869	1034
19	21	3	1	1	4	0	0	0	0	0	9	4	2	0	1	0	1	0	58	674	1510	1	809	907

			Sample	e Inforr	nation					Contaminants	PERSONAL PROPERTY.			Fluid Pr	opertie	S	1000
ple #	Sampled			Change	Fuel Dilution	Soot	Water	Viscosity 40°C	Viscosity 100 °C	Acid Number	Base Num. ASTM4739	Oxidation	Nitration				
Samp	Date		Date	h	h	Lube	L	Filter	%	%	%	cSt	cSt	mg KOH / g	mg KOH / g	abs / cm	abs / 0.1mm
BL	01-Jan-2023	18-	Sep-2023	0	0	Unk	0	Unk			<.1 - FTIR		15.3		6.21	10	7
15	22-May-2024	04	Jun-2024	357	4348	No	0	No	<2 - Estimate	0.2 - E2412	<.1 - FTIR		14.4	2.58		11	10
16	26-Oct-2024	15-	Nov-2024	950	4941	Yes	0	Yes	<2 - Estimate	0.4 - E2412	<.1 - FTIR		13.7	3.33		14	11
17	03-Mar-2025	10-	Mar-2025	320	5261	No	0	No	<2 - Estimate	<.1	<.1 - FTIR		14.4	2.60		12	8
18	22-Apr-2025	30-	Apr-2025	322	5263	Yes	0	Yes	<2 - Estimate	<.1	<.1 - FTIR		14.4	3.04		12	8
19	02-Oct-2025	24-	Oct-2025	242	5930	No	0	No	<2 - Estimate	.2 - E2412	<.1 - FTIR		15.0	2.24		10	8

T			Partio	le Count							
				T COUIT	(particle	s/mL)				Additional Testi	ng
				,					Test Method		
6/14	THE	mL	mL	mL	IIIL	mL	mL	mL			
11											
11	T I										
11											
11											
11											
11										1	
e 6 / / / / /	d On pa //14 / / / /	Q A A A A A A A A A A A A A A A A A A A	Q	Q A A A A A A A A A A A A A A A A A A A	Q	Q	d On particles / mL	Of A A A A A A A A A A A A A A A A A A A	Of A A A A A A A A A A A A A A A A A A A	d On particles / p	d On particles / mL

Comments are advisory only and are based on the sample information provided by the customer being valid. Results related only to the items tested. Missing fluid or component information limits the evaluation. No warranty is expressed or implied. Measurement uncertainty available upon request.

		evaluation. No warranty is expressed or implied. Measurement uncertainty available upon request.
Historical Comments	15	Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Boron is slightly low for this lubricant. Boron levels may naturally decline with use so this is not a cause for concern.
	16	Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Flagged additive levels are different than what should be present for the identified lubricant. This may have been topped off with a different lubricant, the fluid may be misidentified, or a different lubricant or formulation may have been in use prior to a recent change. Please provide this units sump capacity with next sample. Lubricant and filter change acknowledged.
	17	Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Flagged additive levels are different than what should be present for the identified lubricant. This may have been topped off with a different lubricant, the fluid may be misidentified, or a different lubricant or formulation may have been in use prior to a recent change. Please provide this units sump capacity with next sample.
	18	Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Flagged additive levels are different than what should be present for the identified lubricant. This may have been topped off with a different lubricant, the fluid may be misidentified, or a different lubricant or formulation may have been in use prior to a recent change. Please provide this units sump capacity with next sample. Lubricant and filter change acknowledged.

Lubricant Analysis Report

North America: +1-866-341-0487

Overall report severity based on comments.

Accou	nt Information	Component Information	Sample Information
Account Number:	LUB307-0037-0000	Component ID: 5688 H	Tracking Number: 25062Y43825
Company Name:	PIDHERNEY'S	Secondary ID: 1FF300GXV6F731711	Lab Number: E-005898
Contact:	CARLA MERKLIN	Component Type: HYDRAULIC	Lab Location: Edmonton
Address:	RANGE RD 70 PO BOX 940	Manufacturer: JOHN DEERE	Data Analyst: RNM
	ROCKY MOUNTAIN HOUSE,	Model: 300G	Sampled: 22-Apr-2025
	AB T4T 1A7 CA	Application: CONSTRUCTION	Submitted: 29-Apr-2025
Phone Number:	403-845-3072	Sump Capacity:	Received: 30-Apr-2025
		500 1 1 10 10 11 11 11 11 11 11 11 11 11	Completed: 01-May-2025
Filte	r Information	Miscellaneous Information	Product Information
Filter Type:	Information Requested	Wildcard 1: Your Rep.: Cary Maxwell	Product Manufacturer: CHEVRON
Micron Rating:	0	Wildcard 2: Ph:(403) 861-9957	Product Name: CLARITY SYNTHETIC HYD
			Viscosity Grade: ISO 46

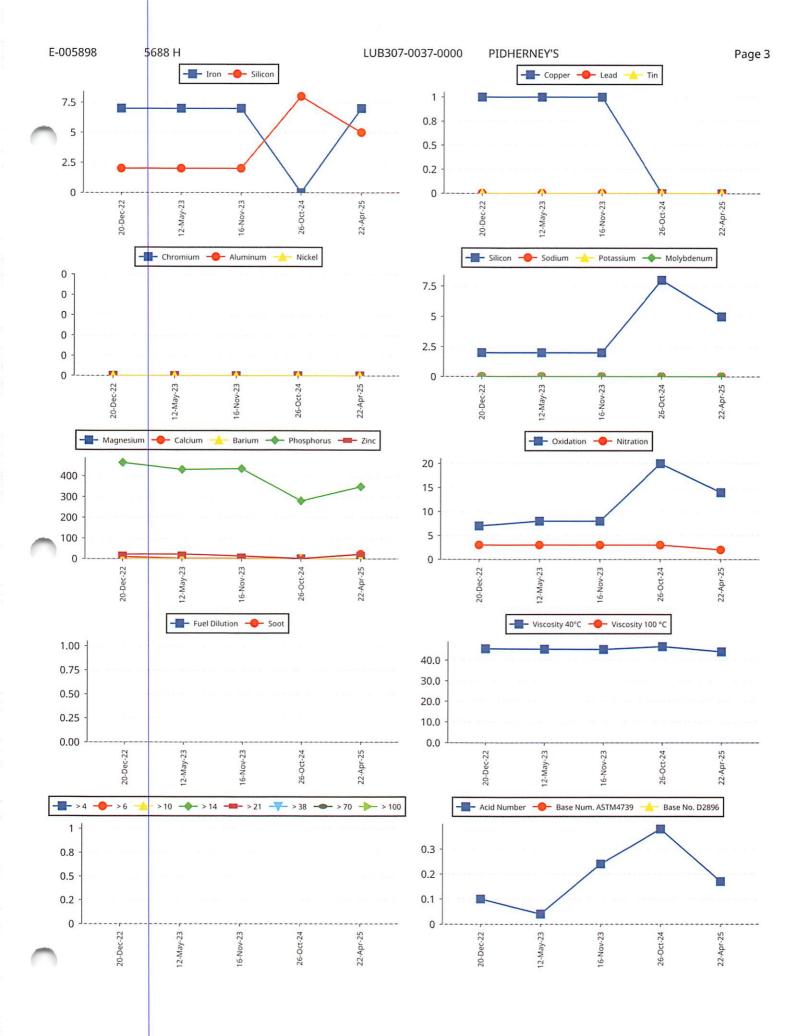
fluid co	onditio	ns. Fla	gged	additi	ve leve	els are	highe	r than	expec	the ide	entifie	ed lub	ricant.	This n	nay ha	ve bee	n topp	ed off	with a	3
	We	ar Met	als (p	pm)					ntamin tals (p	 М	ulti-S	ource	Metal	s (ppm	1)	A	dditive	e Meta	ls (ppr	n)
											_									

				We	ar Me	tals (p	pm)					ntamir tals (p		ı	Multi-S	ource	Metal	s (ppn	1)	A	dditiv	e Meta	ls (ppn	n)
Sample #	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorus	Zinc
BL	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	246	1
5	7	0	0	0	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	9	0	464	21
6	7	0	0	0	1	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	2	0	431	22
7	7	0	0	0	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	0	435	13
8	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	1	0	281	1
9	7	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	1	22	0	349	21

			Sampl	e Inforn	nation					Contaminants		8.919		luid Pr	opertie	S	
ple #	Sampled		: Received	Lube Time	Unit Time	e Change	Lube	r Change	Fuel Dilution	Soot	Water	Viscosity 40°C	Viscosity 100 °C	Acid Number	Base Num. ASTM4739	Oxidation	Nitration
Sample	Date		Date	h	h	Lube	L	Filter	%	%	%	cSt	cSt	mg KOH/g	mg KOH / g	abs / cm	abs / 0.1mm
BL	22-Aug-2023	23-/	ug-2023	0	0	Unk	0	Unk	or Manager and the		<.1 - FTIR	46.7		0.14		2	2
5	20-Dec-2022	10-1	1ar-2023	0	2930	Yes	0	Yes			<.1 - FTIR	45.5		0.10		7	3
6	12-May-2023	16-1	1ay-2023	0	3553	No	0	No			<.1 - FTIR	45.3		0.04		8	3
7	16-Nov-2023	29-1	lov-2023	1061	3991	No	0	Yes			<.1 - FTIR	45.2		0.24		8	3
8	26-Oct-2024	15-1	lov-2024	2011	4941	Yes	0	Yes			<.1 - FTIR	46.6		0.38		20	3
9	22-Apr-2025	30-	Apr-2025	322	5263	No	0	No			<.1 - FTIR	44.1		0.17		14	2

	3333		00011						, 005,	0000	IDITERRETS	r age 2
		33		Parti	cle Count	t (particle	es/mL)			94.30	Additional Testing	
Sample #	apo OSI Based On 4/6/14	barticles	o ^ /particles / mL	0 ^ /particles / mL	barticles (/particles /	& & & & & & & & & & & & & & & & & & &	OZ ^ particles / mL	00 /particles / mL	Test Method		
BL	11							. I				
5	11										1	
6	11											
7	11											
8	11										1	
9	11										1	

Comments are advisory only and are based on the sample information provided by the customer being valid. Results related only to the items tested. Missing fluid or component information limits the evaluation. No warranty is expressed or implied. Measurement uncertainty available upon request.


Historical Comments

Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Flagged additives do not match current baseline reference for the specified product (this does not imply the lubricant does not meet proper API, SAE, or ISO classifications). LUBRICANT TIME was not provided for this sample. Lubricant and filter change acknowledged.

Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Flagged additives do not match current baseline reference for the specified product (this does not imply the lubricant does not meet proper API, SAE, or ISO classifications). LUBRICANT TIME was not provided for this sample. Please provide this units sump capacity with next sample.

Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Flagged additives do not match current baseline reference for the specified product (this does not imply the lubricant does not meet proper API, SAE, or ISO classifications). Please provide this units sump capacity with next sample. Filter change acknowledged.

Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Infrared results indicate beginning lube oxidation; Lubricant and filter change acknowledged.

Lubricant Analysis Report

North America: +1-866-341-0487

Additional Testing

Accou	nt Information	Component Information	Sample Information
Account Number: Company Name:	LUB307-0037-0000	Component ID: 5688 LFD Secondary ID: 1FF300GXV6F731711	Tracking Number: 25062Y43826 Lab Number: E-005717
	CARLA MERKLIN	Component Type: FINAL DRIVE	Lab Location: Edmonton
Address:	RANGE RD 70 PO BOX 940 ROCKY MOUNTAIN HOUSE,	Manufacturer: JOHN DEERE Model: 300G	Data Analyst: RNM Sampled: 22-Apr-2025
Phone Number:	AB T4T 1A7 CA 403-845-3072	Application: CONSTRUCTION Sump Capacity:	Submitted: 29-Apr-2025 Received: 30-Apr-2025 Completed: 01-May-2025
Filte	r Information	Miscellaneous Information	Product Information
Filter Type: Micron Rating:	Information Requested 0	Wildcard 1: Your Rep.: Cary Maxwell Wildcard 2: Ph:(403) 861-9957	Product Manufacturer: CHEVRON Product Name: MULTIGEAR EP-5 Viscosity Grade: SAE 80W90

				We	ar Me	tals (p	pm)				1000000	ntamir tals (p		N	Multi-S	ource	Metal	s (ppm	1)	A	dditive	Meta	ls (ppn	1)
Sample #	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorus	Zinc
BL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	133	1	2	0	775	3
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	634	0
6	3056	25	7	227	9	0	0	0	0	1	967	18	68	13	2	0	20	0	23	27	41	4	560	13
7	0	0	0	0	0	0	0	0	0	0	1	0	2	0	3	0	0	0	1	0	2	0	612	0
8	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	155	0	14	0	914	4
9	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	154	0	13	0	888	4

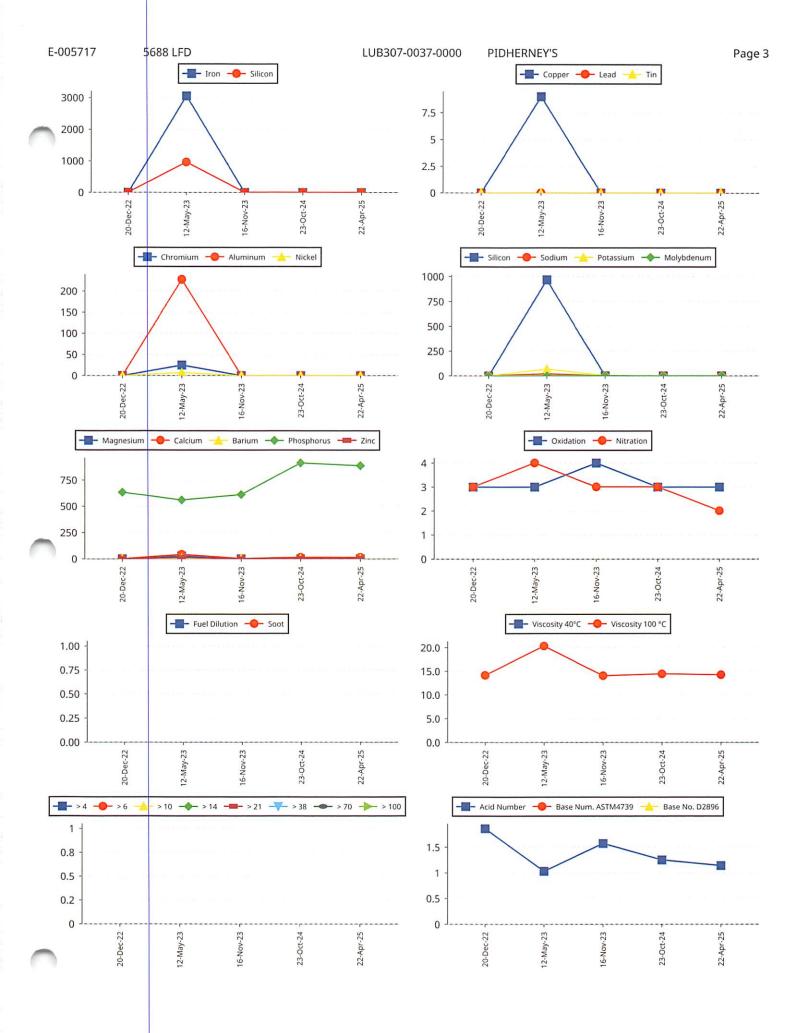
13		reiz.	Sample	e Inforr	nation					Contaminants			- A B	Fluid Pr	opertie	S	
# ole	Sampled		Received	Lube Time	Unit Time	Change	Lube Added	Change	Fuel Dilution	Soot	Water	Viscosity 40°C	Viscosity 100 °C	Acid Number	Base Num. ASTM4739	Oxidation	Nitration
Sample	Date		Date	h	h	Lube	L	Filter	%	%	%	cSt	cSt	mg KOH/g	mg KOH / g	abs / cm	abs / 0.1mm
BL	N/A	18-	Sep-2017	0	0	Unk	0	Unk			<.1 - FTIR		14.1	1.59	1000.3	3	2
5	20-Dec-2022	10-	Mar-2023	0	2930	Yes	0	No			<.1 - FTIR		14.1	1.86		3	3
6	12-May-2023	16-1	May-2023	0	3553	No	0	No			0.3 - Hotplate		20.3	1.03		3	4
7	16-Nov-2023	29-	Nov-2023	1061	3991	Yes	0	No			<.1 - FTIR		14.0	1.57		4	3
8	23-Oct-2024	15-	Nov-2024	950	4941	Yes	0	No			<.1 - FTIR		14.4	1.25		3	3
9	22-Apr-2025	30-	Apr-2025	322	5263	Yes	0	No			<.1 - FTIR		14.2	1.14		3	2

				Parti	cle Coun	t (particle	s/mL)			
Sample #	9000 OSI Based On 4/6/14	particles ,	ပ ^ /particles / mL	O ^ /particles / mL	particles #E	/particles /	& K ^ /particles / mL	02 ^ /particles / mL	OO ^ particles / mL	Test Method
BL	11	100								
5	11									
6	11									
7	11									
8	11									
9	11									

E-005717

5688 LFD LUB307-0037-0000 PIDHERNEY'S

PIDHERNEY'S Page 2


Comments are advisory only and are based on the sample information provided by the customer being valid. Results related only to the items tested. Missing fluid or component information limits the evaluation. No warranty is expressed or implied. Measurement uncertainty available upon request.

Historical Comments Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Boron is slightly low for this lubricant. Boron levels may naturally decline with use so this is not a cause for concern. LUBRICANT TIME was not provided for this sample. Lubricant change acknowledged.

Check for possible source of ABRASIVES entry (such as faulty filter elements, housings, seals, breathers, fill points, etc). Abrasives (Silicon)are at a SEVERE LEVEL; LUBRICANT and FILTER CHANGE is suggested if not done at sampling time. Water is at a MODERATE LEVEL. Gear and/or bearing metal is at a MODERATE LEVEL; Bushing/Thrust metal is at a MINOR LEVEL; Aluminum may be present in the form of alumina/silica (Dirt); TITANIUM SOURCES may be alloy metal from rolling element type BEARINGS, SHAFTS, as a contaminant from coatings/paint, or as a lubricant additive. SODIUM and/or POTASSIUM may be from environmental contaminants; Flagged additives do not match current baseline reference for the specified product (this does not imply the lubricant does not meet proper API, SAE, or ISO classifications). Resample at half interval.

Data indicates no abnormal findings. Resample at normal interval. Please provide this units sump capacity with next sample. Lubricant change acknowledged.

Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Calcium is slightly high for this lubricant. Please provide this units sump capacity with next sample. Lubricant change acknowledged.

9 0

Lubricant Analysis Report

North America: +1-866-341-0487

0	1	2	3	4
NOR	MAL	ABNO	RMAL	CRITICAL

Overall report severity based on comments.

Additional Testing

Accou	nt Information	Component Information	Sample Information
ccount Number:	LUB307-0037-0000	Component ID: 5688 RFD	Tracking Number: 23214F50490
Company Name:	PIDHERNEY'S	Secondary ID: 1FF300GXV6F731711	Lab Number: E-005712
Contact:	CARLA MERKLIN	Component Type: FINAL DRIVE	Lab Location: Edmonton
Address:	RANGE RD 70 PO BOX 940	Manufacturer: JOHN DEERE	Data Analyst: RNM
	ROCKY MOUNTAIN HOUSE,	Model: 300G	Sampled: 22-Apr-2025
	AB T4T 1A7 CA	Application: CONSTRUCTION	Submitted: 29-Apr-2025
Phone Number:	403-845-3072	Sump Capacity:	Received: 30-Apr-2025
			Completed: 01-May-2025
Filte	r Information	Miscellaneous Information	Product Information
Filter Type: Micron Rating:	Information Requested 0	Wildcard 1: Your Rep.: Cary Maxwell Wildcard 2: Ph:(403) 861-9957	Product Manufacturer: CHEVRON Product Name: MULTIGEAR EP-5 Viscosity Grade: SAE 80W90

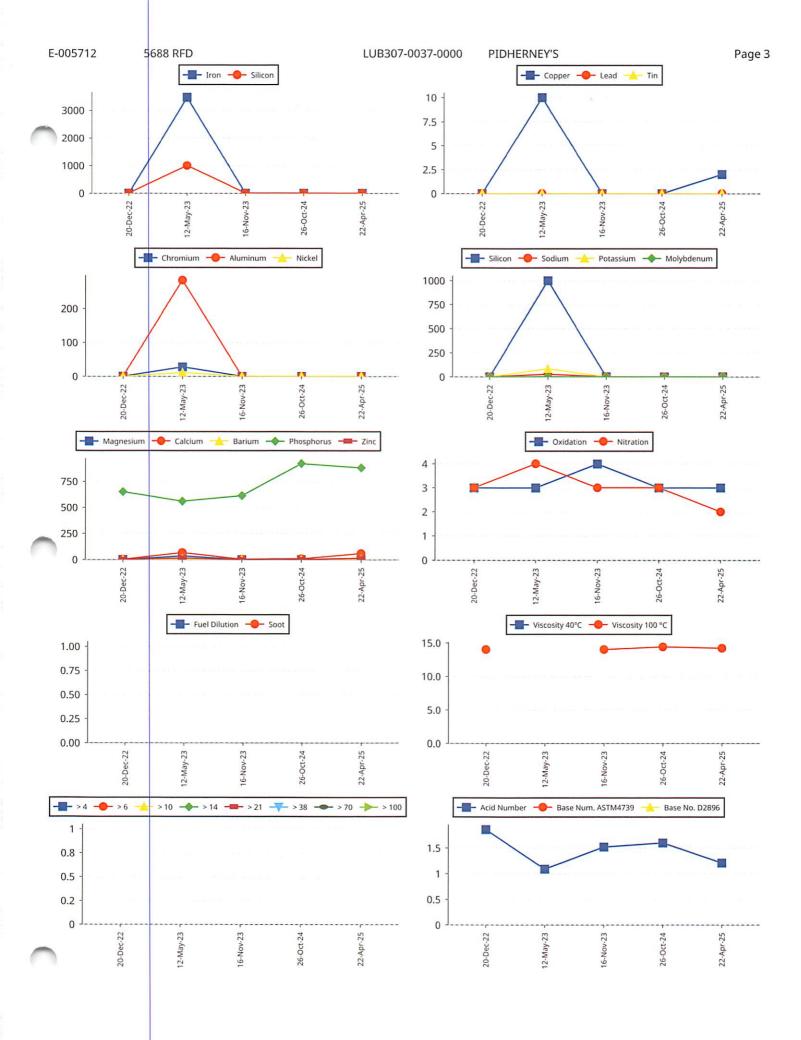
Molybdenum Phosphorus Magnesium Manganese Chromium Vanadium Sample # Cadmium Antimony Titanium Sodium Lithium Copper Barium Silicon Nickel Silver Lead Zinc Tin BL

			Sampl	e Inforr	nation		1455			Contaminants	eren grenn		1	Fluid Pr	opertie:	S	
# əlc	Sampled		Received	Lube Time	Unit Time	Change	Lube	Change	Fuel Dilution	Soot	Water	Viscosity 40°C	Viscosity 100 °C	Acid Number	Base Num. ASTM4739	Oxidation	Nitration
Sample	Date		Date	h	h	Lube	L	Filter	%	%	%	cSt	cSt	mg KOH/g	mg KOH / g	abs / cm	abs / 0.1mm
BL	N/A	18-9	ep-2017	0	0	Unk	0	Unk			<.1 - FTIR		14.1	1.59		3	2
5	20-Dec-2022	10-1	lar-2023	0	2930	Yes	0	No			<.1 - FTIR		14.0	1.86		3	3
6	12-May-2023	16-1	lay-2023	0	3553	No	0	No			0.3 - Hotplate		WAT	1.09		3	4
7	16-Nov-2023	29-1	lov-2023	1061	3991	Yes	0	No			<.1 - FTIR		14.0	1.52		4	3
8	26-Oct-2024	15-1	lov-2024	950	4941	Yes	0	No			<.1 - FTIR		14.4	1.60		3	3
9	22-Apr-2025	30-	pr-2025	322	5263	Yes	0	No			<.1 - FTIR		14.2	1.21		3	2

	-		00000	Partio	le Count	(particle	s/mL)			ALC:
Sample #	po O O SI Based On 4/6/14	7 A particles /	ပ ^ /particles / mL	0 ^ particles / mL	↑ ↑ particles / mL	7 A Particles /	& K A particles / mL	02 ^ particles / mL	O ^ particles / mL	Test Method
BL	11			100 m						
5	11									
6	11									
7	11									
8	11									
9	11									

E-005712 5688 RFD LUB307-0037-0000 PIDHERNEY'S Page 2

Comments are advisory only and are based on the sample information provided by the customer being valid. Results related only to the items tested. Missing fluid or component information limits the evaluation. No warranty is expressed or implied. Measurement uncertainty available upon request.


Historical Comments

Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Boron is slightly low for this lubricant. Boron levels may naturally decline with use so this is not a cause for concern. LUBRICANT TIME was not provided for this sample. Lubricant change acknowledged.

Check for possible source of ABRASIVES entry (such as faulty filter elements, housings, seals, breathers, fill points, etc). Abrasives (Silicon)are at a SEVERE LEVEL; LUBRICANT and FILTER CHANGE is suggested if not done at sampling time. Water is at a MODERATE LEVEL. Viscosity result is invalid due to water contamination. Gear and/or bearing metal is at a MODERATE LEVEL; Bushing/Thrust metal is at a MINOR LEVEL; Aluminum may be present in the form of alumina/silica (Dirt); Flagged additives do not match current baseline reference for the specified product (this does not imply the lubricant does not meet proper API, SAE, or ISO classifications). LUBRICANT TIME was not provided for this sample. Resample at half interval.

Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Boron is slightly low for this lubricant. Boron levels may naturally decline with use so this is not a cause for concern. Lubricant change acknowledged.

Data indicates no abnormal findings. Resample at normal interval. Please provide this units sump capacity with next sample. Lubricant change acknowledged.

Lubricant Analysis Report

North America: +1-866-341-0487

Additional Testing

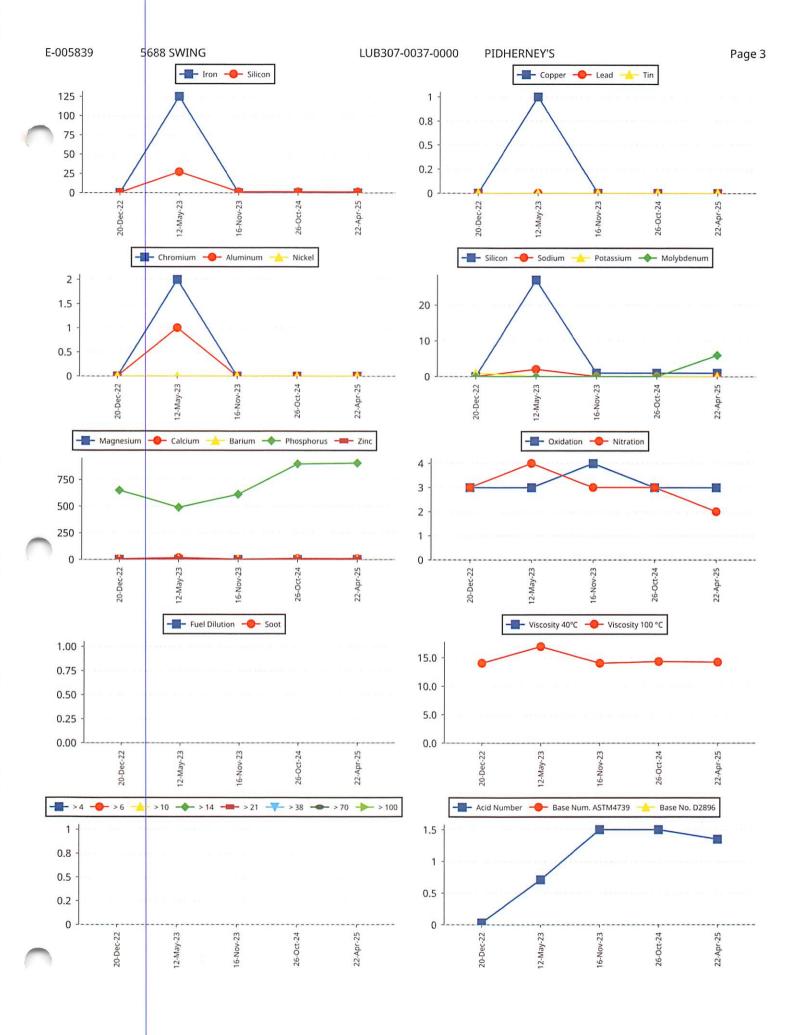
Accou	nt Information	Component Inform	mation	San	nple Information
Account Number:	LUB307-0037-0000	Component ID: 5688 SWIN	NG	Tracking Nu	mber: 23214F50491
Company Name:	PIDHERNEY'S	Secondary ID: 1FF300GX	V6F731711	Lab Nu	mber: E-005839
Contact:	CARLA MERKLIN	Component Type: SWING GE	AR BOX	Lab Loc	cation: Edmonton
Address:	RANGE RD 70 PO BOX 940	Manufacturer: JOHN DEE	RE	Data Ar	nalyst: RNM
	ROCKY MOUNTAIN HOUSE,	Model: 300G		San	npled: 22-Apr-2025
	AB T4T 1A7 CA	Application: CONSTRU	CTION	Subn	nitted: 29-Apr-2025
Phone Number:	403-845-3072	Sump Capacity:		Rec	eived: <mark>30-Apr-2025</mark>
				Comp	oleted: 01-May-2025
Filte	r Information	Miscellaneous Info	rmation	Pro	duct Information
Filter Type: Micron Rating:	Information Requested 0	Wildcard 1: Your Rep.: Wildcard 2: Ph:(403) 80		Product N	cturer: CHEVRON Name: MULTIGEAR EP-5 Grade: SAE 80W90
Comments Data	indicates no abnormal findin	। gs. Resample at normal interval.			
	Wear Metals (nnm)	Contaminant Metals (ppm)		re Metals (nom)	Additive Metals (nnm)

				We	ar Mei	tals (p	om)					ntamir tals (p		1	/ulti-S	ource	Metal	s (ppm	1)	А	dditive	Meta	ls (ppn	n)
Sample #	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorus	Zinc
BL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	133	1	2	0	775	3
5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	3	0	650	0
6	125	2	0	1	1	0	0	0	0	0	27	2	0	0	0	0	2	0	71	1	16	2	490	7
7	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	612	0
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	149	0	8	0	898	2
9	0	0	0	0	0	0	0	0	0	0	1	0	0	0	6	0	0	0	155	1	7	0	906	2

		No. I	Sampl	e Inforr	nation					Contaminants	-475/72450	E - 12		Fluid Pr	operties	S	
le #	Sampled		Received	Lube Time	Unit Time	Change	Lube Added	Change	Fuel Dilution	Soot	Water	Viscosity 40°C	Viscosity 100 °C	Acid Number	Base Num. ASTM4739	Oxidation	Nitration
Sample	Date		Date	h	h	Lube	L	Filter	%	%	%	cSt	cSt	mg KOH/g	mg KOH / g	abs / cm	abs / 0.1mm
BL	N/A	18-9	ep-2017	0	0	Unk	0	Unk			<.1 - FTIR		14.1	1.59		3	2
5	20-Dec-2022	10-1	1ar-2023	0	2930	Yes	0	No			<.1 - FTIR		14.0	0.03		3	3
6	12-May-2023	16-N	1ay-2023	0	3553	No	0	No			<.1 - FTIR		16.9	0.71		3	4
7	16-Nov-2023	29-1	lov-2023	1061	3991	Yes	0	No			<.1 - FTIR		14.0	1.50		4	3
8	26-Oct-2024	15-N	lov-2024	950	4941	Yes	0	No			<.1 - FTIR		14.3	1.50		3	3
9	22-Apr-2025	30-	pr-2025	322	5263	No	0	No			<.1 - FTIR		14.2	1.35		3	2

				Parti	cle Coun	t (particle	s/mL)			
Sample #	opo OSI Based On 4/6/14	7 A particles /	ی ۸ particles ہ mL	C ^ /particles / mL	mL ^ particles	/particles / mL	& ^ /particles mL	02 ^ /particles / mL	00 ^ /particles / mL	Test Method
BL	11									
5	11									
6	11									
7	11									
3	11									
9	11									

5688 SWING


LUB307-0037-0000

PIDHERNEY'S

Page 2

evaluation. No warranty is expressed or implied. Measurement uncertainty available upon request.

Historical Comments	5	Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Boron is slightly low for this lubricant. Boron levels may naturally decline with use so this is not a cause for concern. LUBRICANT TIME was not provided for this sample. Lubricant change acknowledged.
	6	Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Gear and/or bearing metal is at a MINOR LEVEL; Abrasives (silicon/dirt) are at a MINOR LEVEL; Flagged additives do not match current baseline reference for the specified product (this does not imply the lubricant does not meet proper API, SAE, or ISO classifications). LUBRICANT TIME was not provided for this sample. Please provide this units sump capacity with next sample.
	7	Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Boron is slightly low for this lubricant. Boron levels may naturally decline with use so this is not a cause for concern. Please provide this units sump capacity with next sample.
	8	Data indicates no abnormal findings. Resample at normal interval. Please provide this units sump capacity with next sample. Lubricant change acknowledged.

